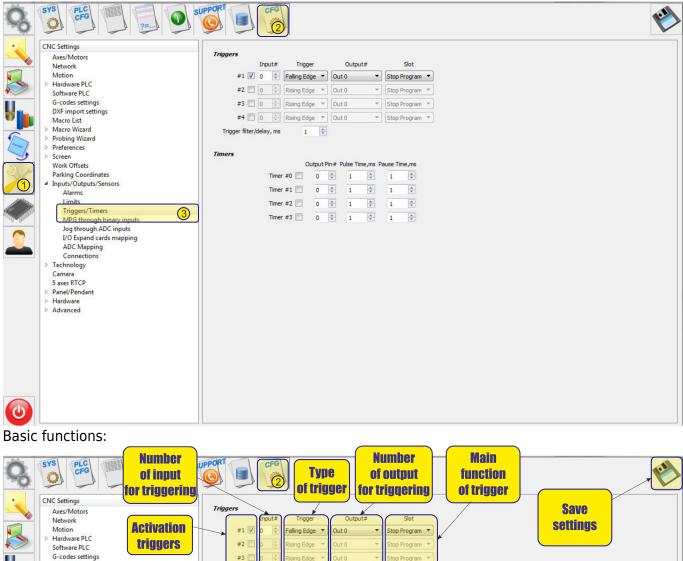
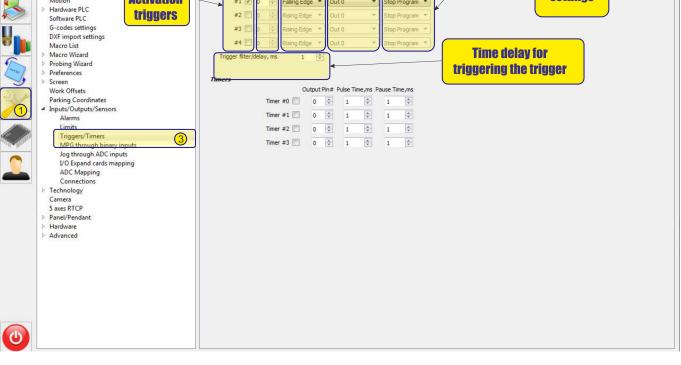
Triggers

Video	


• A trigger is a function of automatic program tracking of the state of a selected input sensor with a reaction in the form of performing a pre-selected procedure for a PC.


Frequently, most sensors do not require constant monitoring during continuous program operation, for example, at idle transitions or at the time of stopping or inactivity of equipment. But the tasks at certain points of the equipment operation, which require quick reaction on the selected sensor. In such cases, the fastest method of processing will be to enable the trigger and assign it to the required controller input with enabling automatic tracking of the change in the state of the signal level at the selected input, and when the state changes in the right direction (from "0" to "1" or "1 "in" 0 ") to perform the necessary actions. The trigger as a function is faster than the usual input processing inside the plc procedure. A striking example of the work of the trigger is the work of the sensor "arc response" on plasma cutting. The state of this sensor requires constant processing only during the operation of the plasma source, in the cutting process. When the plasma source is turned off (i.e., at idle transitions or in the process of waiting), tracking of the sensor is not required. Therefore, the response to the sensor during the waiting time should be ignored, but during the cutting process, the response to the sensor should be as fast as possible.Therefore, this sensor is most convenient to handle using a trigger.

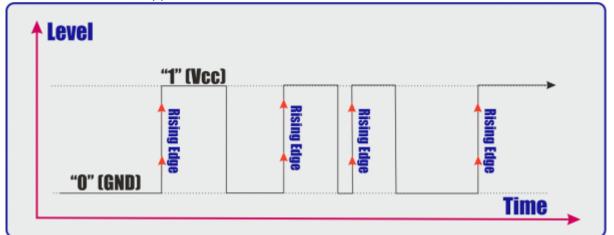
myCNC software supports up to 4 Triggers.

- It's possible to configure **Input Number** and **Edge Type** (Rising or Falling) to activate the Trigger.
- Each trigger can be **Enabled** of **Disabled** in PLC procedure. If the Trigger is disabled, all activity on configured input is ignored;
- If trigger is enabled and programmed Rising/Falling Edge happens, Trigger activated and starts PLC procedure defined as **Slot**

Main window:

• To activate the trigger , it is necessary to check the box next to number of trigger:

	Input#	Trigger	Output#	Slot
#1 🔽	0	Falling Edge 🔻	Out 0 🔻	Stop Program 🔻


• Then select the type of triggering the trigger. *Triggers*

	Inp	out#	Trigger	Outpu	it#	Slot
#1 🔽	0	* *	Falling Edge 🔻	Out 0	•	Stop Program 🔻
#2 🥅	0	-A. 	Rising Edge Falling Edge	Out 0	-	Stop Program 🔻
#3 🕅	0	(A) (¥.)	Rising Edge 🔻	Out 0	*	Stop Program 💌
#4 🕅	0	*	Rising Edge 💌	Out 0	*	Stop Program 🔻
Trigger filter	/dela	y, ms	1			

• **Faling Edge** - Trigger triggering on the falling edge of the impulse, i.e. when passing from the upper state ("1") to the lower state ("0").

Level				
	1" (Vcc)			
	8	8	8	
	8			
	₩			
"O" (GND)				

• **<u>Rising Edge</u>** - Trigger triggering on the rising edge of the impulse, i.e. when passing from the lower state ("0") to the upper state ("1").

• After tripping, you can select the controller's output

I	nput#	Trigger	Output#	ŧ	Slot
#1 🔽 0	A 7	Falling Edge 🔻	Out 0	+	Stop Program 🔻
#2 🕅 🖸	A W	Rising Edge 🔻	Out 0 Out 1		Stop Program 🔻
#3 🕅 🖸	A V	Rising Edge 💌	Out 2 Out 3	Ξ	Stop Program 🔻
#4 🕅 🖸	4 9	Rising Edge 🔻	Out 4 Out 5		Stop Program 🔻
Trigger filter/de	lay, ms	1	Out 6 Out 7 Out 8 Out 9	+	

• You can also choose to start the necessary procedure for triggering the trigger

	Inp	ut#	Trigger	Outpu	it#	Slot
#1 🔽	0	*	Falling Edge 🔻	Out 0	•	Stop Program 🔻
#2 🕅	0		Rising Edge 🔻	Out 0	*	Stop Program TRIG01
#3 🕅	0	A. W	Rising Edge 💌	Out 0		TRIG02 TRIG03
#4 🥅	0	A. V	Rising Edge 🔻	Out 0		TRIG04 TRIG05
Trigger filter/	delay	/, ms	1]		TRIG06 TRIG07 TRIG08

Examples of usage Tiggers:

Example "Arc ON"

Arc ON signal from Plasma power source represents current Plasma Arc state. Running program should be stopped if the signal failed during cutting. The signal Falling during "no cutting" operation should be ignored. A solution is to set up "Arc ON" input, falling edge as **Trigger**, Enable the trigger just after piercing operation in M71/M03 PLC procedures and disable it in M74/M05 PLC procedures just before OFF plasma power source.

- For example, take the following conditions: an arc sensor is connected to input number 5 of the ET10 controller. Upon the arrival of the signal "1" from this sensor, we must start moving along the program and start monitoring the input so that when the value changes from "1" to "0" the program will be stopped.
- First, set up the trigger in the appropriate section.

SYS PLC SUPPORT CFG

CNC Settings Axes/Motors	Triggers	-	-				Slot	
 Inputs/Outputs/Sensors 		Input#	Trigg	33	Output		SIOT	
Alarms	#1 🕅	0 *	Falling Ed	lge 🔻	Not connect	ed 🔻	Stop Program	n
Triggers/Timers (3)	#2 🕅	0	Rising Ed	ge 💌	Out 0	· •	Stop Program	n
MPG through binary inputs	#3 🕅	0	Rising Ed	ge 👻	Out 0	*	Stop Program	n
Jog through ADC inputs I/O Expand cards mapping	#4 🕅	0	Rising Ed	ge 🔻	Out 0	*	Stop Program	n
ADC Mapping Connections	Trigger filter/	delay, m	2	×				
Connections Network		delay, m	2	×				
Connections Network Motion	Trigger filter/ <i>Timers</i>	delay, m			n # Dulas Tau	D	T	
Connections Network Motion PLC			c	utput P	in# Pulse Time			
Connections Network Motion PLC Hardware PLC				utput P	in# Pulse Time	e,ms Pa	ause Time, ms	
Connections Network Motion PLC Hardware PLC Hardware PLC: XML configs		Time	c	Output P				
Connections Network Motion PLC Hardware PLC		Time	c er #0 🕅	Output P 0 0	÷ 1	*	1	

• Since we arc sensor connected to input number 5.

	Inp	ut#	Trigge	r	Output#		Slot	
#1 🔽	0	×	Falling Edg	e 🔻	Not connected	•	Stop Program	-
#2	0	×	Rising Edge	a 🔻	Out 0	v	Stop Program	-
#3 🔲	0	A V	Rising Edge	a 🔻	Out 0	. W	Stop Program	1
#4 🕅	0	A	Rising Edge		Out 0		Stop Program	
Trigger filter/ <i>iggers</i>	delay	/, ms	2	A V				
		/, ms	2 Trigger		Output#		Slot	
	delay	/, ms			Output#	•	Slot Stop Program	•
iggers	delay Inpu	/, ms ut#	Trigger	. •		•		
iggers #1 √	Inpu	/, ms ut#	Trigger Falling Edge	•	Not connected	•	Stop Program	

• , this input is selected in the settings of the trigger. And since it is necessary to monitor the transition from "1" to "0", select the "Falling Edge" trigger type in the settings

	ut#	Trigger	Outpu	IC#	Slot	
5	A 7	Falling Edge	Not connec	ted 🔻	Stop Program	•
0	A. 	Rising Edge Falling Edge	Out 0	-	Stop Program	¥
0	* *	Rising Edge	Out 0	v	Stop Program	v
0	*	Rising Edge	Out 0	*	Stop Program	Ŧ
	0		0 Falling Edge Rising Edge Rising Edge	0 Image: Falling Edge Out 0 0 Image: Falling Edge Out 0 0 Image: Falling Edge Out 0	0 Tealling Edge Out 0 0 Rising Edge Out 0 0 Rising Edge Out 0	0 Tealling Edge Out 0 Tealling Edge 0 Tealling Edge Out 0 Tealling Edge 0 Tealling Edge Out 0 Tealling Edge

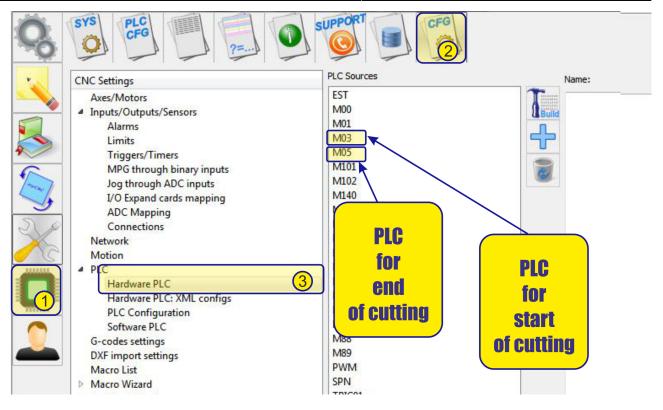
• Since you just need to stop the program, we don't need to use any of the controller outputs, so the "output #" field is left empty.

	Input#	Trigger		Output#		Slot
#1 🔽	5 🌲	Falling Edge	•	Not connected	+	Stop Program
#2 🕅	0 *	Rising Edge	*	Out 7 Out 8	^	Stop Program
#3 🕅	0	Rising Edge	-	Out 9 Out 10		Stop Program
#4 🕅	0	Rising Edge	*	Out 11 Out 12	1	Stop Program 🔻
Trigger filter/c	delay, ms	2	*	Out 13 Out 14 Out 15	m	

• Since the trigger we want to stop the program, it is necessary in the "slot" select the "stop program"

T	Nice.	-	-
	nun	ue	r >
	rig	yc	13

	Inp	out#	Trigger	Output	#	Slot
#1 🔽	5	*	Falling Edge	Not connect	ed 🔻	Stop Program 🔻
#2 🕅	0	.A. W	Rising Edge	r][Out 0	*	Stop Program TRIG01
#3 🕅	0	×	Rising Edge	r] [Out 0		TRIG02 TRIG03
#4 🕅	0	*	Rising Edge	r][Out 0		TRIG04 TRIG05
Trigger filter,	/dela	y, ms	2	7		TRIG06 TRIG07 TRIG08


• To avoid false triggering, set the temporary filter to 3 ms, i.e. during this time, the program will monitor the status of the trigger, and if during this time the status of the trigger changes several times, this operation will be considered false.

	Input#	Trigger	Output#	Slot
#1 🔽	5	Falling Edge 🔻	Not connected 🔻	Stop Program 🔻
#2 📃	0	Rising Edge 🔻	Out 0 🔻] [Stop Program 🔻
#3 🕅	0	Rising Edge 🔻	Out 0] [Stop Program 🔻
#4 🕅	0 *	Rising Edge 🔻	Out 0 💌	Stop Program 💌

• This completes the installation of the trigger in this menu, it remains only to save the settings.

RT	1	CFG					
riggers #1 ☑		put#	Trigger Falling Edge	•	Output#	Slot	Save
#2 🕅				_	Out 0 *	Stop Program 👻	setting
#3 📃] [0	A.V	Rising Edge	*	Out 0 🖛	Stop Program 👻	Julia
#4 III] 0	A V	Rising Edge	*	Out 0 🔻	Stop Program 💌	

• Next, you need to use this trigger in the plz procedure of cutting on (M71 or M03) and in the cutting off procedure (M74 and M05).

M71/M03 example procedure

```
#define relay PLAZMA ON 2
#define input ARC READY 5
main()
{
    timer=0;
    portset (relay_PLAZMA_ON);
    timer=timeout_plasma_ready; //wait till plasma arc ready
    timer=5000;
    do
    {
        timer--;
        a=portget(input ARC READY);
        if (a!=0) { timer=0; };
    }while(timer>0); //pause
    a=portget(input_ARC_READY); //doublecheck arc sensor
    if (a==0)
    {
        message=PLCCMD TRIGGER1 ON;
        timer=3;do{timer--;}while(timer>0);
    }
    else
    {
        portclr(relay PLAZMA ON);
        exit(plc exit plasma fail);
    };
```

exit(99);

};

M71/M03 Procedure description

• We assign the variable "relay_PLAZMA_ON" a value of 2. This variable determines the number of the output responsible for the inclusion of the plasma cutting source in the work.

#define relay_PLAZMA_ON 2

• We assign the variable "input_ARC_READY" a value of 5. This variable determines the number of the "arc sensor" input from the plasma cutting source.

#define input_ARC_READY 5

• timer-This variable is temporary and is used to start timers at different intervals.

timer=0;

• portset (relay_PLAZMA_ON)-Set the output to control the source in the on state.

portset (relay_PLAZMA_ON);

We start the timer for 5 seconds (5000 ms) (timer=5000;). During this time, we check the state
of the input of the "arc sensor" for a state change, i.e. transition from the value "0" to the value
"1" (a=portget(input_ARC_READY);). When the state changes and the input value "1" is
received, the timer expires (if (a!=0) { timer=0; };).

```
timer=5000;
do
{
   timer--;
   a=portget(input_ARC_READY);
   if (a!=0) { timer=0; };
}while(timer>0); //pause
```

Re-check the status of the "arc sensor" input (a=portget(input_ARC_READY);). When confirming
the input trigger when the value "1" appears at the input, instead of the value "0", we start the
program trigger (message=PLCCMD_TRIGGER1_ON) that was previously configured. Now the
program will automatically follow the change in the state of the "arc sensor" input and the state
change at the sensor input, when going from "1" to "0" (falling edge), the cutting map will be
left blank. (timer=3;do{timer-;}while(timer>0);) - program pause 3ms.

```
a=portget(input_ARC_READY); //doublecheck arc sensor
if (a==0)
{
    message=PLCCMD_TRIGGER1_ON;
    timer=3;do{timer--;}while(timer>0);
}
```

• If there is no confirmation of input triggering, i.e. the input state will remain equal to "0" (else)we consider switching on unsuccessful and interrupt the procedure and carry out the exit from

9/10

the procedure by mistake (exit(plc_exit_plasma_fail);), with switching off the source of plasma cutting(portclr(relay_PLAZMA_ON);).

```
else
{
    portclr(relay_PLAZMA_ON);
    exit(plc_exit_plasma_fail);
};
```

M74/M05 example procedure

```
#define relay_PLAZMA_ON 2
#define input_ARC_READY 5
main()
{
    timer=0;
    portclr (relay_PLAZMA_ON);
    message=PLCCMD_TRIGGER1_OFF;
    timer=3;do{timer--;}while(timer>0);
    exit(99);
};
```

M74/M05 Procedure description

 We assign the variable "relay_PLAZMA_ON" a value of 2. This variable determines the number of the output responsible for the inclusion of the plasma cutting source in the work.

#define relay_PLAZMA_ON 2

 We assign the variable "input_ARC_READY" a value of 5. This variable determines the number of the "arc sensor" input from the plasma cutting source.

#define input_ARC_READY 5

• timer-This variable is temporary and is used to start timers at different intervals.

timer=0;

• portclr (relay_PLAZMA_ON)-Set the output to control the source is shut down.

portclr (relay_PLAZMA_ON);

 We swith off the program trigger (message=PLCCMD_TRIGGER1_OFF). Now the program will not automatically follow the change in the state of the "arc sensor" input. (timer=3;do{timer-;}while(timer>0);) - program pause 3ms.

message=PLCCMD_TRIGGER1_OFF; timer=3;do{timer--;}while(timer>0);

Example "Probing operations"

 Probing operations. Events from probe sensor should be handled while probing operations. However, Probe input activated while normal moving might be in fact hitting the probe into the material. It can lead to Probe sensor breakage and run should be stopped immediately. A solution is to set up probe input as a trigger, configure Immediate Stop in the Slot PLC procedure and disable the trigger while probing operations ONLY.

From: http://docs.pv-automation.com/ - myCNC Online Documentation

Permanent link: http://docs.pv-automation.com/mycnc/triggers

Last update: 2022/03/07 16:09

