2025/11/22 17:15 1/6 Running Motion (Positioning) commands from PLC

Running Motion (Positioning) commands from PLC
Option 1

Motion Controller and PLC running on myCNC controllers as independent tasks in Real Time multi-
tasking environment. There is API to run motion commands from PLC. This features used for wide
range of procedures like probing, homing, measure procedures etc.

Procedure gOmoveaA is used to send motion command from PLC to motion controller. This procedure
has 3 parameters -

gOmoveA(flags, axes mask, distance

 flags
o bit 0 - absolute programming (0 - incremental, 1- absolute)
o bit 1 - machine coordinates (0- program coordinates, 1- machine coordinates)
o bit 7 - delayed start
e axes_mask
o bit 0 - X axis
o bit1-Y axis
o bit 2 - Z axis
o bit 3 - A axis
o bit 4 - B axis
o bit 5 - C axis
» distance - distance to go - integer value in 0.01 units (mm or inch depends on CNC setup)

NOTE: Use the bit conversion:

bit converted value
bit 0/0x01
bit 1/0x02
bit 2|0x04
bit 3|0x08
bit 4/0x10
bit 5|0x20

Examples:

gOmoveA // Move axis X to 10mm from current position (incremental)
gOmoveA // Move axis Z to Position =0 (absolute)

Easy to see that only 1 distance value programmed in gOmoveA procedure. Delayed start is used
to program motion in several coordinates. Delayed start bit tells to Motion controller to not start
motion but just store distance position for future motion. Distance for several axes can be setup with
delayed start bit, then the last procedure with no delayed start will start motion in all programmed
positions.

Example

myCNC Online Documentation - http://cnc42.com/

Last update: 2025/03/12 14:58 plc:motion_commands_from_plc http://cnc42.com/plc/motion_commands_from_plc

//need to move to absolute position (100,50)
gOmoveA (0x81,1,10000);// Set X(absolute, delayed start)
gOmoveA (0x81,2,5000);// Set Y(absolute, delayed start)
gOmoveA (0x40,0x3,0 // Start XY move
code=gvarget (6060 code!=0x4d);//wait till motion finished

Motion command is asynchronous operation. Actual motion is started a few milliseconds after
g0moveA code executed. PLC procedure usually should wait motion is finished or monitor some event
(sensor triggered) while motion executed.

NOTE: The drawback of this motion method is that after receiving the g0move command, the
controller sends the movement values (distance, speed, acceleration) to the myCNC software, after
which it then receives the recalculated values from the software in the units the controller requires
(pulses, etc). As can be noted, this requires some additional time for the back and forth sending of
information, which results in delays of up to 150ms (or even higher if using a Windows PC). If it is
necessary to circumvent this delay, please use Option 2 for motion commands (described below).

A PLC procedure can obtain the current Motion Control State. Current Motion Control State is mapped
to global variables array variable #6060. Return values while reading the variable are

Value Description

0 Positioning motion (GO code/ gOmoveA running)
1 Line interpolation motion (G1 code)
2 Arc interpolation motion(G2/G3 code)

0x4d (symbol 'M') Tech code runnunig (M-code/PLC procedure)
0x57 (symbol 'W')|Wait/Idle mode

Example (Move Z up to 10mm, wait till finished): Example

#define GVAR OXYFUEL IGNITE X ENABLED 7496

#define GVAR OXYFUEL IGNITE X POS 7497
#define GVAR OXYFUEL IGNITE Y ENABLED 7498
#define GVAR OXYFUEL IGNITE Y POS 7499#define

GVAR PLC CURRENT PROGRAM POSITION 17001 //+20main()

x0=gvarget (17001

yO=gvarget (17002) ;gvarset(20010,x0);gvarset(5539,1 //PLC Move API version
2

gvarset(8632,500); //set PLC GO Move Speed (500IPM)

gvarset(8631,50); //set PLC GO Acceleration time (50ms)mask=0;

flag=gvarget (GVAR OXYFUEL IGNITE X ENABLED

flag

mask-=mask | 0Ox1
pos=gvarget (GVAR OXYFUEL IGNITE X POS
gOmoveA (0x81,1,pos);// Set X(absolute, delayed start)
flag=gvarget (GVAR OXYFUEL IGNITE_ Y ENABLED
flag

mask=mask | 0x2
pos=gvarget (GVAR OXYFUEL IGNITE Y POS
gOmoveA(0Ox81,2,pos);// Set Y(absolute, delayed start)

http://cnc42.com/ Printed on 2025/11/22 17:15

2025/11/22 17:15 3/6 Running Motion (Positioning) commands from PLC

mask==0 exit (99 gOmoveA (0x40,mask, O // Start move
code=gvarget (6060 code!=0x4d);//wait till motion
finishedgvarset(9101,1); //show popuptimer=0;
spaceO=gvarget(8786); //initial space counter

timer=100 timer timer=0
spacel=gvarget (8786 //current space counter
spaceO==spacel);gvarset(9101,0); //hide popupg@moveA(0x81,1,x0);//
Set X(absolute, delayed start)
gOmoveA(0x81,2,y0);// Set Y(absolute, delayed start)

gOmoveA (0x40,mask, O // Start move
code=gvarget (6060 code!=0x4d);//wait till motion finished
exit(99);

Global variable #7080 is mapped to positioning speed register. Writing to this register will change
motion speed for future g0OmoveA calls. Speed value is integer value given in units per minute.

NOTE: Global variable #8632 (GVAR_GOPLC SPEED UNITS) is recommended instead of #7080 on
recent software versions (as of 2024). See gvariables 8632 and 8631 in Global Variables.

Example (setup positioning speed for gdmoveA calls)
gvarset (7080,3000);//will set positioning speed to 30000 [mm/min]

MO02 procedure handler (which executed at the end of g-code file or when Stop button pressed) may
contain lift spindle up before turning it OFF to prevent router bits overheat. A complete example of
M02.plc is shown below

MO02.plc

#include pins.h
#include vars.h
main

timer=0
proc==plc_proc_spindle
lift up=1
gvarset (7080, speed z);//set speed
gOmoveA (absolute,4,lift up*100);//absolute programming; Z axis;
timer=200 timer timer>0);//wait till motion started

code=gvarget (6060 code==0 //wait till
motion 1is stopped

portclr (OUTPUT MIST
portclr(OUTPUT FLOOD

myCNC Online Documentation - http://cnc42.com/

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://cnc42.com/mycnc/global_variables
http://cnc42.com/_export/code/plc/motion_commands_from_plc?codeblock=5

Last update: 2025/03/12 14:58 plc:motion_commands_from_plc http://cnc42.com/plc/motion_commands_from_plc

gvarset //Reset Mist State
gvarset //Reset Flood State
dac01-0x0

portclr(OUTPUT SPINDLE
portclr(OUTPUT CCW SPINDLE

gvarset //Spindle State

gvarset //Spindle Speed Mirror register

command=PLC_MESSAGE _SPINDLE SPEED CHANGED

parameter
message-PLCCMD REPLY TO MYCNC
timer timer timer //pause to push the message

with Spindle Speed data

proc=plc proc idle
message=PLCCMD MOTION ABORT
exit

®* NOTE: Note the proc=plc_proc_idle code at the end of the M02 macro. If this line is not
present, then the Stop command is not completed, and the system will remain suspended as it waits
for the PLC code to complete all operations. As a result, running/restarting the control program will
not work correctly.

First block of this procedure check if spindle currently is O, and lift_up variable is positive value and
the lift tool up for given value set in plc-variables.xml configuration file. For those who don't need this
lifting can remove the lines and rebuild PLC (see rebuild buttons in PLC Builder interface)

Option 2

NOTE: At the time of writing this manual, Option 2 for motion control is available in the Testing branch
of myCNC firmware (version 15,050 and above). For firmware update instructions, please consult the
manual for your particular controller.

If bit #13 is set for the axis mask, then Option 2 of the PLC motion command is used (instead of
Option 1, described above). In this case the control board itself will handle all calculations necessary
for the positioning motion without the support of myCNC software. As a result, the controller does not
need to communicate with the Host PC and the movement will be started immediately (unlike Option
1, where extra communication with the Host PC leads to an additional delay of about 100-150ms).

The drawback of this method is that the movement instructions are programmed in pulses rather
than the more conventional units of mm/inches, as the controller is not aware of the motion units that
are set in the myCNC software.

Useful global variable registers:

http://cnc42.com/ Printed on 2025/11/22 17:15

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://cnc42.com/plc/plc_builder

2025/11/22 17:15 5/6 Running Motion (Positioning) commands from PLC

e #8630 - used to set the motion speed, in pulses/second
e #8631 - used to set the ramp-up time to a given speed, in ms

Example of a motion command for this method:

gOmoveA(0x01,0x1001,16000) ; //absolute programming; X axis;

e 0x01 - Absolute coordinates

e 0x1001 - bit #13 (0x1000) and X-axis mask (0x01)

e 16000 - coordinate for the selected X-axis, in pulses (for example, if the pulse-per-mm value for
the X-axis is equal to 800, the movement will be equal 1600/800=20mm

draw _square
wait motion end
timer timer timer //wait motion started
ex code=gvarget

code==0x4d ex
code==0x57 ex

ex
square

gvarset //speed/frequency 50kHz
gvarset //Time ~ 0.1sec (in milliseconds)
gOmoveA (0x01,0x1001 //absolute programming; Y axis;
wait motion end
gOmoveA(0Ox01,0x1002 //absolute programming; Y axis;
wait motion end
gOmoveA (0x01,0x1001 //absolute programming, X axis;
wait motion end
gOmoveA(0x01,0x1002 //absolute programming; Y axis;

wait motion end

From:
http://cnc42.com/ - myCNC Online Documentation

Permanent link:
http://cncd42.com/plc/motion_commands_from_plc

Last update: 2025/03/12 14:58

myCNC Online Documentation - http://cnc42.com/

http://cnc42.com/_export/code/plc/motion_commands_from_plc?codeblock=7
http://cnc42.com/
http://cnc42.com/plc/motion_commands_from_plc

Last update: 2025/03/12 14:58 plc:motion_commands_from_plc http://cnc42.com/plc/motion_commands_from_plc

http://cnc42.com/ Printed on 2025/11/22 17:15

	[Running Motion (Positioning) commands from PLC]
	Running Motion (Positioning) commands from PLC
	Option 1
	Option 2

