
2026/01/23 01:51 1/6 Running Motion (Positioning) commands from PLC

myCNC Online Documentation - http://docs.pv-automation.com/

Running Motion (Positioning) commands from PLC

Option 1

Motion Controller and PLC running on myCNC controllers as independent tasks in Real Time multi-
tasking environment. There is API to run motion commands from PLC. This features used for wide
range of procedures like probing, homing, measure procedures etc.

Procedure g0moveA is used to send motion command from PLC to motion controller. This procedure
has 3 parameters -

g0moveA(flags, axes_mask, distance);

flags
bit 0 - absolute programming (0 - incremental, 1- absolute)
bit 1 - machine coordinates (0- program coordinates, 1- machine coordinates)
bit 7 - delayed start

axes_mask
bit 0 - X axis
bit 1 - Y axis
bit 2 - Z axis
bit 3 - A axis
bit 4 - B axis
bit 5 - C axis

distance - distance to go - integer value in 0.01 units (mm or inch depends on CNC setup)

NOTE: Use the bit conversion:

bit converted value
bit 0 0x01
bit 1 0x02
bit 2 0x04
bit 3 0x08
bit 4 0x10
bit 5 0x20

Examples:

g0moveA(0,1,1000);// Move axis X to 10mm from current position (incremental)
g0moveA(1,4,0);// Move axis Z to Position =0 (absolute)

Easy to see that only 1 distance value programmed in g0moveA procedure. Delayed start is used
to program motion in several coordinates. Delayed start bit tells to Motion controller to not start
motion but just store distance position for future motion. Distance for several axes can be setup with
delayed start bit, then the last procedure with no delayed start will start motion in all programmed
positions.

Example

Last update: 2025/03/12 14:58 plc:motion_commands_from_plc http://docs.pv-automation.com/plc/motion_commands_from_plc

http://docs.pv-automation.com/ Printed on 2026/01/23 01:51

//need to move to absolute position (100,50)
g0moveA(0x81,1,10000);// Set X(absolute, delayed start)
g0moveA(0x81,2,5000);// Set Y(absolute, delayed start)
g0moveA(0x40,0x3,0); // Start XY move
do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished

Motion command is asynchronous operation. Actual motion is started a few milliseconds after
g0moveA code executed. PLC procedure usually should wait motion is finished or monitor some event
(sensor triggered) while motion executed.

NOTE: The drawback of this motion method is that after receiving the g0move command, the
controller sends the movement values (distance, speed, acceleration) to the myCNC software, after
which it then receives the recalculated values from the software in the units the controller requires
(pulses, etc). As can be noted, this requires some additional time for the back and forth sending of
information, which results in delays of up to 150ms (or even higher if using a Windows PC). If it is
necessary to circumvent this delay, please use Option 2 for motion commands (described below).

A PLC procedure can obtain the current Motion Control State. Current Motion Control State is mapped
to global variables array variable #6060. Return values while reading the variable are

Value Description
0 Positioning motion (G0 code/ g0moveA running)
1 Line interpolation motion (G1 code)
2 Arc interpolation motion(G2/G3 code)
0x4d (symbol 'M') Tech code runnunig (M-code/PLC procedure)
0x57 (symbol 'W') Wait/Idle mode

Example (Move Z up to 10mm, wait till finished): Example

#define GVAR_OXYFUEL_IGNITE_X_ENABLED 7496
#define GVAR_OXYFUEL_IGNITE_X_POS 7497
#define GVAR_OXYFUEL_IGNITE_Y_ENABLED 7498
#define GVAR_OXYFUEL_IGNITE_Y_POS 7499#define
GVAR_PLC_CURRENT_PROGRAM_POSITION 17001 //+20main()
{x0=gvarget(17001);
y0=gvarget(17002);gvarset(20010,x0);gvarset(5539,1); //PLC Move API version
2
gvarset(8632,500); //set PLC G0 Move Speed (500IPM)
gvarset(8631,50); //set PLC G0 Acceleration time (50ms)mask=0;
flag=gvarget(GVAR_OXYFUEL_IGNITE_X_ENABLED);
if (flag)
{
mask=mask | 0x1;
pos=gvarget(GVAR_OXYFUEL_IGNITE_X_POS);
g0moveA(0x81,1,pos);// Set X(absolute, delayed start)
};flag=gvarget(GVAR_OXYFUEL_IGNITE_Y_ENABLED);
if (flag)
{
mask=mask | 0x2;
pos=gvarget(GVAR_OXYFUEL_IGNITE_Y_POS);
g0moveA(0x81,2,pos);// Set Y(absolute, delayed start)

2026/01/23 01:51 3/6 Running Motion (Positioning) commands from PLC

myCNC Online Documentation - http://docs.pv-automation.com/

};if (mask==0) { exit(99); };g0moveA(0x40,mask,0); // Start move
do { code=gvarget(6060); }while(code!=0x4d);//wait till motion
finishedgvarset(9101,1); //show popuptimer=0;
space0=gvarget(8786); //initial space counter
do{
 timer=100;do{timer--;}while(timer>0);
 space1=gvarget(8786); //current space counter
}while(space0==space1);gvarset(9101,0); //hide popupg0moveA(0x81,1,x0);//
Set X(absolute, delayed start)
g0moveA(0x81,2,y0);// Set Y(absolute, delayed start)
g0moveA(0x40,mask,0); // Start move
do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished
exit(99);
};

Global variable #7080 is mapped to positioning speed register. Writing to this register will change
motion speed for future g0moveA calls. Speed value is integer value given in units per minute.

NOTE: Global variable #8632 (GVAR_G0PLC_SPEED_UNITS) is recommended instead of #7080 on
recent software versions (as of 2024). See gvariables 8632 and 8631 in Global Variables.

Example (setup positioning speed for g0moveA calls)

gvarset(7080,3000);//will set positioning speed to 30000 [mm/min]

M02 procedure handler (which executed at the end of g-code file or when Stop button pressed) may
contain lift spindle up before turning it OFF to prevent router bits overheat. A complete example of
M02.plc is shown below

M02.plc

#include pins.h
#include vars.h
main()
{
 timer=0;

 if (proc==plc_proc_spindle)
 {
 if (lift_up>1)
 {
 gvarset(7080,speed_z);//set speed
 g0moveA(absolute,4,lift_up*100);//absolute programming; Z axis;
 timer=200; do{timer--;}while (timer>0);//wait till motion started
 do { code=gvarget(6060); } while(code==0); //wait till
motion is stopped
 };
 };

 portclr(OUTPUT_MIST);
 portclr(OUTPUT_FLOOD);

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://docs.pv-automation.com/mycnc/global_variables
http://docs.pv-automation.com/_export/code/plc/motion_commands_from_plc?codeblock=5

Last update: 2025/03/12 14:58 plc:motion_commands_from_plc http://docs.pv-automation.com/plc/motion_commands_from_plc

http://docs.pv-automation.com/ Printed on 2026/01/23 01:51

 gvarset(7372,0);//Reset Mist State
 gvarset(7373,0);//Reset Flood State

 dac01=0x0;

 portclr(OUTPUT_SPINDLE);
 portclr(OUTPUT_CCW_SPINDLE);
 gvarset(7370,0);//Spindle State
 gvarset(7371,0);//Spindle Speed Mirror register

 command=PLC_MESSAGE_SPINDLE_SPEED_CHANGED;
 parameter=0;
 message=PLCCMD_REPLY_TO_MYCNC;
 timer=10; do{timer--;}while (timer>0); //pause to push the message
with Spindle Speed data

 proc=plc_proc_idle;
 message=PLCCMD_MOTION_ABORT;
 exit(99);
};

 NOTE: Note the proc=plc_proc_idle code at the end of the M02 macro. If this line is not
present, then the Stop command is not completed, and the system will remain suspended as it waits
for the PLC code to complete all operations. As a result, running/restarting the control program will
not work correctly.

First block of this procedure check if spindle currently is O, and lift_up variable is positive value and
the lift tool up for given value set in plc-variables.xml configuration file. For those who don't need this
lifting can remove the lines and rebuild PLC (see rebuild buttons in PLC Builder interface)

Option 2

NOTE: At the time of writing this manual, Option 2 for motion control is available in the Testing branch
of myCNC firmware (version 15,050 and above). For firmware update instructions, please consult the
manual for your particular controller.

If bit #13 is set for the axis mask, then Option 2 of the PLC motion command is used (instead of
Option 1, described above). In this case the control board itself will handle all calculations necessary
for the positioning motion without the support of myCNC software. As a result, the controller does not
need to communicate with the Host PC and the movement will be started immediately (unlike Option
1, where extra communication with the Host PC leads to an additional delay of about 100-150ms).

The drawback of this method is that the movement instructions are programmed in pulses rather
than the more conventional units of mm/inches, as the controller is not aware of the motion units that
are set in the myCNC software.

Useful global variable registers:

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://docs.pv-automation.com/plc/plc_builder

2026/01/23 01:51 5/6 Running Motion (Positioning) commands from PLC

myCNC Online Documentation - http://docs.pv-automation.com/

#8630 - used to set the motion speed, in pulses/second
#8631 - used to set the ramp-up time to a given speed, in ms

Example of a motion command for this method:

 g0moveA(0x01,0x1001,16000); //absolute programming; X axis;

0x01 - Absolute coordinates
0x1001 - bit #13 (0x1000) and X-axis mask (0x01)
16000 - coordinate for the selected X-axis, in pulses (for example, if the pulse-per-mm value for
the Х-axis is equal to 800, the movement will be equal 1600/800=20mm

draw_square

wait_motion_end()
{
 timer=2; do{timer--;}while (timer>0); //wait motion started
 do
 {
 ex=0; code=gvarget(6060);
 if (code==0x4d) {ex=1;};
 if (code==0x57) {ex=1;};
 } while(ex==0);
};

square()
{
 gvarset(8630,50000); //speed/frequency 50kHz
 gvarset(8631,100); //Time ~ 0.1sec (in milliseconds)

 g0moveA(0x01,0x1001,16000); //absolute programming; Y axis;
 wait_motion_end();
 g0moveA(0x01,0x1002,16000); //absolute programming; Y axis;
 wait_motion_end();
 g0moveA(0x01,0x1001,8000); //absolute programming; X axis;
 wait_motion_end();
 g0moveA(0x01,0x1002,8000); //absolute programming; Y axis;
 wait_motion_end();

};

From:
http://docs.pv-automation.com/ - myCNC Online Documentation

Permanent link:
http://docs.pv-automation.com/plc/motion_commands_from_plc

Last update: 2025/03/12 14:58

http://docs.pv-automation.com/_export/code/plc/motion_commands_from_plc?codeblock=7
http://docs.pv-automation.com/
http://docs.pv-automation.com/plc/motion_commands_from_plc

Last update: 2025/03/12 14:58 plc:motion_commands_from_plc http://docs.pv-automation.com/plc/motion_commands_from_plc

http://docs.pv-automation.com/ Printed on 2026/01/23 01:51

	[Running Motion (Positioning) commands from PLC]
	Running Motion (Positioning) commands from PLC
	Option 1
	Option 2

