
2024/05/07 00:58 1/3 Running Motion (Positioning) commands from PLC

myCNC Online Documentation - https://docs.pv-automation.com/

Running Motion (Positioning) commands from PLC

Motion Controller and PLC running on myCNC controllers as independent tasks in Rral Time multi-
tasking environment. There is API to run motion commands from PLC. This features used for wide
range of procedures like probing, homing, measure procedures etc.

Procedure g0moveA is used to send motion command from PLC to motion controller. Procedure has 3
parameters -

g0moveA(flags, axes_mask, distance);

flags
bit 0 - absolute programming (0 - incremental, 1- absolute)
bit 1 - machine coordinates (0- program coordinates, 1- machine coordinates)
bit 7 - delayed start

axes_mask
bit 0 - X axis
bit 1 - Y axis
bit 2 - Z axis
bit 3 - A axis
bit 4 - B axis
bit 5 - C axis

distance - distance to go - integer value in 0.01 units (mm or inch depends on CNC setup)

Examples:

g0moveA(0,1,1000);// Move axis X to 10mm from current position (incremental)
g0moveA(1,4,0);// Move axis Z to Position =0 (absolute)

Easy to see that only 1 distance value programmed in g0moveA procedure. Delayed start is used
to program simultaneous motion in several coordinates. Delayed start bit tells to Motion controller to
not start motion but just store distance position for future motion. Distance for several axes can be
setup with selayed start bit, then the last procedure with no delayed start will start motion in all
programmed positions.

Example

 //need to move to absolute position (100,50,20)
g0moveA(0x81,1,10000);// Set X=100 (absolute, delayed start)
g0moveA(0x81,2,5000);// Set Y=50 (absolute, delayed start)
g0moveA(0x81,4,2000);// Set Z=20 (absolute, delayed start)
g0moveA(1,7,0); // Start move to (100,50,20)

Motion command is asynchronous operation. Actual motion is started a few miliseconds after
g0moveA code executed. PLC procedure usually should wait motion is finished or monitor some event
(sensor triggered) while motion executed.

For this case PLC procedure can get current Motion Control State. Current Motion Control State is
mapped to global variables array variable #6060. Return values while reading the variable are

Last update:
2018/04/26 17:03 plc:motion_commands_from_plc https://docs.pv-automation.com/plc/motion_commands_from_plc?rev=1524776607

https://docs.pv-automation.com/ Printed on 2024/05/07 00:58

Value Description
0 Positioning motion (G0 code/ g0moveA running)
1 Line interpolation motion (G1 code)
2 Arc interpolation motion(G2/G3 code)
0x4d (symbol 'M') Tech code runnunig (M-code/PLC procedure)
0x57 (symbol 'W') Wait/Idle mode

Example (Move Z up to 10mm, wait till finished): Example

move_up=10;
g0moveA(0,4,move_up*100); //Z axis;
timer=10; do{timer--;}while (timer>0);//wait 10ms , motion should start,
motion state will turn to **0**
do{ code=gvarget(6060); } while(code==0);

Global variable #7080 is mapped to positioning speed register. Writing to this register will change
motion speed for future g0moveA calls. Speed value is integer value given in units per minute.

Example (setup positioning speed for g0moveA calls)

gvarset(7080,3000);//will set positioning speed to 30000 [mm/min]

M02 procedure handler (which executed at the end of g-code file or when Stop button pressed) may
contain lift spindle up before turning it OFF to prevent router bits overheat. A complete example of
M02.plc is shown below

M02.plc

#include pins.h
#include vars.h
main()
{
 timer=0;

 if (proc==plc_proc_spindle)
 {
 if (lift_up>1)
 {
 gvarset(7080,speed_z);//set speed
 g0moveA(absolute,4,lift_up*100);//absolute programming; Z axis;
 timer=10; do{timer--;}while (timer>0);//wait till motion started
 do { code=gvarget(6060); } while(code==0); //wait till
motion is stopped
 };
 };

 portclr(OUTPUT_MIST);
 portclr(OUTPUT_FLOOD);
 gvarset(7372,0);//Reset Mist State
 gvarset(7373,0);//Reset Flood State

https://docs.pv-automation.com/_export/code/plc/motion_commands_from_plc?codeblock=5

2024/05/07 00:58 3/3 Running Motion (Positioning) commands from PLC

myCNC Online Documentation - https://docs.pv-automation.com/

 dac01=0x0;

 portclr(OUTPUT_SPINDLE);
 portclr(OUTPUT_CCW_SPINDLE);
 gvarset(7370,0);//Spindle State
 gvarset(7371,0);//Spindle Speed Mirror register

 command=PLC_MESSAGE_SPINDLE_SPEED_CHANGED;
 parameter=0;
 message=PLCCMD_REPLY_TO_MYCNC;
 timer=10; do{timer--;}while (timer>0); //pause to push the message
with Spindle Speed data

 proc=plc_proc_idle;
 message=PLCCMD_MOTION_ABORT;
 exit(99);
};

First block of this procedure check if spindle currently is O, and lift_up variable is positive value and
the lift tool up for given value set in plc-variables.xml configuration file. For those who don't need this
lifting can remove the lines and rebuild PLC (see rebuild buttons in PLC Builder interface)

From:
https://docs.pv-automation.com/ - myCNC Online Documentation

Permanent link:
https://docs.pv-automation.com/plc/motion_commands_from_plc?rev=1524776607

Last update: 2018/04/26 17:03

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
https://docs.pv-automation.com/plc/plc_builder
https://docs.pv-automation.com/
https://docs.pv-automation.com/plc/motion_commands_from_plc?rev=1524776607

	[Running Motion (Positioning) commands from PLC]
	Running Motion (Positioning) commands from PLC

