User Tools

Site Tools


plc:plc_examples

PLC Examples

NOTE: The myCNC team recommends utilizing the examples provided in this manual (as well as other manuals in this documentation) as a starting point for your machine setup. When possible (and applicable), it is recommended to keep changes to a mininum. In general, using these examples as the basis for your PLCs/macro commands allows for an easier setup process.

Spindle Speed control for DAC

SPN.plc
#define command     var00
#define parameter   var01
//set Spindle speed control via DAC channel #1
//Spindle Speed is given in **eparam** register
 
main()
{
  value=eparam;
  if (value>0xFFF) {value=0xFFF;};      
  //fix if given value is out of range 0...0xfff
  if (value<0) {value=0;};
 
  dac01=value;   //setup DAC value
 
 
  //**Set Spindle Speed** is asynchronous operation. 
  //It's better to inform myCNC Software New Spindle Speed applied.
  //Send information about new Spindle Speed to myCNC Software
  message=PLCCMD_REPLY_TO_MYCNC;                   
  //Command code to send to myCNC software
  command=PLC_MESSAGE_SPINDLE_SPEED_CHANGED;       
  //Message code
  parameter=eparam;     //New Spindle Speed information
  timeout=timer+10; do { timer++; } while (timer<timeout); 
  //Delay to push the Message to myCNC Software
 
  gvarset(7371,eparam);           
  //myCNC register #7371 contains actual Spindle Speed. 
  //Another way to inform myCNC software about new Spindle Speed 
  //(to display on it DRO for example)
 
  exit(99);  //normal exit.
};

Spindle Control through Triggers

In this case, a couple of lines are added to standard M03 (spindle ON), M05 (spindle OFF) and M02 (End program) PLCs, typically to allow the system to interpret some spindle feedback signal. Spindle control is done through a trigger, with the trigger flag indicating whether the trigger is ON or OFF. If the spindle is ON and the trigger is activated, then the program will be stopped.

The following code can be used to enable the trigger:

  message=PLCCMD_TRIGGER1_ON;
  timer=10;do{timer--;}while(timer>0);

The following code can be used to disable the trigger:

  message=PLCCMD_TRIGGER1_OFF;
  timer=10;do{timer--;}while(timer>0);

The code to enable the trigger should be inserted into M03, while the code to disable the trigger should be inserted into M05 and M02. The full resultant PLC procedure code can be found below:

Click to expand the M03 code

Click to expand the M05 code

Click to expand the M02 code

More info on the M02 procedure available here: Stop/End program button commands.

The trigger itself can be set up in Settings > Config > Inputs/Outputs/Sensors > Triggers/Timers to look the following way:

  • Input Number can be set to the port which the spindle feedback signal is using (#0 in this case)
  • Trigger will be set to Falling Edge
  • Output set to Not Connected
  • Slot set to Stop Program

Spindle Speed control for ET10_DAC

SPN.plc
#define command     var00
#define parameter   var01
//set Spindle speed control via ET10 DAC channel #1
//Spindle Speed is given in **eparam** register
 
main()
{
  command=0x32; 
  //EXT_ET10_DAC_OFFSET; set ADC offset register address
  parameter=0x800-(eparam/2)+(1<<12);
  //0x800 - is the middle of 12bits range - represents 0V
  //Eparam contains 12bits DAC value in 0V range, ET10 DAC setup in +10V...-10V range, so need to /2
  //Encoder channel number is given in high 12 bits of 16bit word.
 
  message=PLCCMD_SET_CNC_EXTVAR;    
  //setup Message register with command for access to [[External CNC Variables]]
  texit=timer+2;do{timer++;}while(timer<texit);
  //2ms delay to push the command from PLC to myCNC Core
 
 
  //**Set Spindle Speed** is asynchronous operation. 
  //It's better to inform myCNC Software New Spindle Speed applied.
  //Send information about new Spindle Speed to myCNC Software
  message=PLCCMD_REPLY_TO_MYCNC;                   //Command code to send to myCNC software
  command=PLC_MESSAGE_SPINDLE_SPEED_CHANGED;       //Message code
  parameter=eparam;                                //New Spindle Speed information
  timeout=timer+10; do { timer++; } while (timer<timeout); //Delay to push the Message to myCNC Software
 
  gvarset(7371,eparam);           
  //myCNC register #7371 contains actual Spindle Speed. 
  //Another way to inform myCNC software about new Spindle Speed (to display on it DRO for example)
 
 
exit(99);  //normal exit.
};

M03, Spindle On, Relay and ET10 DAC

M03.plc
//Turn on Spindle clockwise
//set Spindle speed control ET10 DAC channel #2
#include pins.h  //defines for pins numbers
#include vars.h  //defines for variable names
 
main()
{
  timer=0;
  value=eparam;
 
  command=0x32;//EXT_ET5_DAC_OFFSET
  parameter=0x800-(eparam/2)+(2<<12);//channel #2
  message=PLCCMD_SET_CNC_EXTVAR;
  texit=timer+2;do{timer++;}while(timer<texit);
 
  portclr(OUTPUT_CCW_SPINDLE);
  portset(OUTPUT_SPINDLE);
 
 
  gvarset(7370,1);         
  //Global Register #7370 shown actual Spindle state (0=OFF, 1=ON).
  //Set Register value when Spindle is ON
  gvarset(7371,eparam);    
  //myCNC register #7371 contains actual Spindle Speed. 
  //Another way to inform myCNC software about new Spindle Speed (to display on it DRO for example)
 
 
  //**Set Spindle Speed** is asynchronous operation. 
  //It's better to inform myCNC Software New Spindle Speed applied.
  //Send information about new Spindle Speed to myCNC Software
  message=PLCCMD_REPLY_TO_MYCNC;                   //Command code to send to myCNC software
  command=PLC_MESSAGE_SPINDLE_SPEED_CHANGED;       //Message code
  parameter=eparam;                                //New Spindle Speed information
  timeout=timer+10; do { timer++; } while (timer<timeout); //Delay to push the Message to myCNC Software
 
 
 
  //Wait till Spindle Rotation Speed comes to good values before next motion started
  timeout=timeout_on_delay+timer;
  do{timer++;}while (timer<timeout);               //delay for Spindle reach given speed
 
  exit(99);                                        //normal exit.
};

Water Fill and Drain control

Procedure M240 is used in some plasma cutting machines to control Water Table Fill & Drain.

Running procedure with parameter “1” toggles Water Filling, running with parameter “0” toggles Water Draining. If try to ON both Fill & Drain, the procedure will turn off the previous relay to prevent conflicts.

M240.plc
#define OUTPUT_FILL		13
#define OUTPUT_DRAIN		12
 
main()
{
  o=gvarget(7184);	//read OUTPUT PORT 0 state (pins 0...31)
  drain_state=o&(1<<OUTPUT_DRAIN);
  fill_state=o&(1<<13);
 
  if (eparam==0) //toggle drain
  {
   if (drain_state==0)
   {
	portset(OUTPUT_DRAIN);
	portclr(OUTPUT_FILL);	//to prevent both are open
   }else
   {
	portclr(OUTPUT_DRAIN);
   };
  }else //toggle fill
  {
   if (fill_state==0)
   {
	portset(OUTPUT_FILL);
	portclr(OUTPUT_DRAIN);	//to prevent both are open
   }else
   {
	portclr(OUTPUT_FILL);
   };
  };
exit(99);
};

A tutorial on how to use global variable 7184 present in the code above is available on our YouTube channel:

Eliminating tangential knife spin at the start of the program (M212)

Because of how the system records angles, the software shows angles larger than 360 degrees (one full revolution) if a number of turns in the same direction have been taken by the knife. For example, if the knife has turned around its axis from 0 degrees twice in the positive direction, the angle now will be recorded as 720 degrees (2 full revolutions). After the program completes, and the angle is left at this number, the next time the program starts, the knife will rotate back until the angle is equal to zero. This behaviour is not ideal for some users, as it can extend the cutting process time.

The M212 PLC exists to remove this positive/negative degree turn that is larger than 360 degrees at the program start. This is useful if the user wants to stop the knife from spinning back multiple times to its 0 position on the c-axis as the program is starting (however, this will still allow the knife to rotate an angle less than a full revolution in order to align itself properly).

This PLC is provided with the myCNC software, and looks as follows:

main()
{
 c=gvarget(17006); //get C-position in PLC units (0.01 degree)

 m=18000; //180 degree in PLC units (0.01 degree)
 if (c>m)
 {
  do{ c=c-36000; }while (c>m); //remove the whole positive turns 
 };

 m=0-m; //-180 degree in PLC units (0.01 degree)
 if (c<m)
 {
   do{ c=c+36000; }while (c<m); //remove the whole negative turns 
 };

 gvarset(7080,1000); //set speed 3000 degree/s;
 timer=10;do{timer--;}while(timer>0);
 g0moveA(0x0,0x20,0-c); //C axis, move to C=0
 timer=200;do{timer--;}while(timer>0);
 do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished

 timer=100;do{timer--;}while(timer>0); //delay for any case

 exit(99);
};

This PLC can be added to the DXF footer in Settings > Config > DXF Import Settings to run every time when the program generated from an imported DXF file finishes running.

NOTE: Since M212 changes the current coordinate value, it is necessary to always have a positioning command of the format G0C_ after M212. If, for example, the coordinate is reset to 0 inside the PLC, then the next code after the PLC must be G90G0A0. This will result in no movement along the axis, but the coordinates will be synchronized.

When analyzing the program, by default the software does not know that the coordinate inside the PLC has changed, and thus the subsequent G0 command must be used to update it (G1/G2/G3 are NOT suitable for this task). However, the G0 code is only necessary if the M212 is embedded into a G-code program. If the M212 PLC is started independently (for example by clicking a the button which launches the M212 alone), then the system will automatically see that the coordinate has been changed.

Gantry Alignment Procedure (with Homing)

M132
G10 L80 P5521 Q1
G10 L80 P5525 Q1
 
M146 P0 L1028
M88 L0 P5(Soft stop when sensor triggered)
G91 G0 Y  -300.0000 F   600.00
G04 P0.1
M89 L1 P5(Quick stop when sensor triggered)
G91 G0 Y   300.0000 F    30.00
G04 P0.1
M135
M135
G10 L80 P5521 Q1
G10 L80 P5525 Q1
 
M146 P0 L1028
 
M144
G91 G0 Y100 F30
G04 P0.1
 
G90 G10 L70 P0 Y0
G04 P0.1
M145 P0 L1028
G90 G10 L193 P97 Q5531
 
debug #98
G90 G10 L192 P98 Q7525
debug #98
debug #97
G90 G10 L190 P97 Q98
debug #97
 
G90 G28.9 Y97 F200
 
M146 P0 L1028
 
G90 G10 L70 P0 Y0
 
G90 G10 L80 P5521 Q0
G90 G10 L80 P5525 Q0
G90 G10 L80 P7395 Q0 (Homing Flag)
M144.plc
//Look after input1 & input2 sensors, remember position, when triggered
 
main()
{
 
timer=0;
 
message=PLCCMD_MOTION_CONTINUE;
texit=timer+2;do{timer++;}while(timer<texit);
 
ready=0;
 
state1=0;
state2=0;
 
e9000=portget(13);//gvarget(9000);
e9001=portget(14);//gvarget(9001);
 
state0=0;
 
m1=0;
m2=0;
 
do
{
 timer++;
 
if (state0==0)
{
 a=portget(13);//gvarget(9000);
 if (a!=e9000)
 {
		m1=1;
		position1=gvarget(5021+1);	//Machine Y
state0=1;
 };
 a=portget(14);//gvarget(9100);
 if (a!=e9001)
 {
		m1=2;
		position1=gvarget(5021+1);	//Machine Y
state0=1;
 };
}else
{
if (m1==2)
{
 a=portget(13);//gvarget(9000);
 if (a!=e9000)
 {
		m2=1;
		position2=gvarget(5021+1);	//Machine Y
state0=2;
 };
}else
{
 a=portget(14);//gvarget(9100);
 if (a!=e9001)
 {
		m2=2;
		position2=gvarget(5021+1);	//Machine Y
state0=2;
 };
};
};
 
 
}while(state0<2);
 
 
b=position1-position2;
 
 
 
if (b>25000)
{
b=50000-b;
};
c=0-25000;
if (b<c)
{
b=50000+b;
};
 
 
 
gvarset(97,b);
texit=timer+30;do{timer++;}while(timer<texit);
 
gvarset(7230,m1);
if (m1==1) { gvarset(98,1);}
else { x=0-1; gvarset(98,x);};
 
message=PLCCMD_MOTION_SKIP;
//message=PLCCMD_MOTION_SOFT_SKIP;
texit=timer+2;do{timer++;}while(timer<texit);
 
exit(99);
};
M145.plc
#define var_address var00
#define var_value   var01
 
main()
{
	timer=0;
 
	lparam=eparam>>16;
 
  axis=1;     //
	n=gvarget(7230);
 
	channel=0xff;
	if (n==1) {channel=0;};
	if (n==2) {channel=1;};
	if (n==4) {channel=2;};
	if (n==8) {channel=3;};
 
	if (channel>8)
	{
	message=PLCCMD_MOTION_ABORT;
	texit=timer+2;do{timer++;}while(timer<texit);
	exit(99);
	};
 
 
	var_value=15;
	var_address=112+channel;//channel turn off
	message=PLCCMD_SET_CNC_VAR;
	texit=timer+2;do{timer++;}while(timer<texit);
 
	exit(99);
 
};
M146.plc
#define var_address var00
#define var_value   var01
 
main()
{
	timer=0;
 
  dir=0;
 
  axis=1;
  channel=0;
 
	var_address=112+channel;//channel 0 set up
	var_value=axis;
	if (dir!=0) {  var_value=16+axis;  };
	message=PLCCMD_SET_CNC_VAR;
	texit=timer+10;do{timer++;}while(timer<texit);
 
 
  channel=1;
 
	var_address=112+channel;//channel 0 set up
	var_value=axis;
	if (dir!=0) {  var_value=16+axis;  };
	message=PLCCMD_SET_CNC_VAR;
	texit=timer+10;do{timer++;}while(timer<texit);
 
	gvarset(7230,1);
 
 
	exit(99);
};

Automatic plate rotation and offset adjustment

#include pins.h
#define INPUT_PROBE 7
#define ROLLBACK 2000
wait_move()
{
    do { code=gvarget(6060); }while(code!=0x4d);  //wait till motion finished
};
show_error()
{
    gvarset(9121,1);
    timer=50;do{timer--;}while(timer>0);
    message=PLCCMD_MOTION_BREAK;	//1033
    exit(99);
};
find_start()
{
  gvarset(8631,50); //acceleration time 100ms = 0.1s
  gvarset(8634,(1<<24)|speed); //Jog speed for X
  gvarset(8634,(2<<24)|speed); //Jog speed for Y
  gvarset(8635,3); //X+ Y+
  timer=0;
  do
   {
      sensor0=portget(INPUT_PROBE);
      if ((timer&0xff)==0)   {     gvarset(8635,3);    };
      timer++;
    }while(sensor0==0);
  timer=2000;
  do   {      if ((timer&0xff)==0)   {     gvarset(8635,3);    };       timer--;    }while(timer>0);
   gvarset(8635,0); wait_move();
};
do_rollback_y()
{
  sensor0=portget(INPUT_PROBE);
  if (sensor0==0)
  {
    do{
    g0moveA(0,0x02,ROLLBACK); wait_move();
    sensor0=portget(INPUT_PROBE);
    }while(sensor0==0);
  };
};
do_rollback_x()
{
  gvarset(8632,speed);
  g0moveA(0,0x01,length+(length>>2));
  do
  {
    sensor0=portget(INPUT_PROBE);
    if (sensor0==0) { message=stop_code;  };
    code=gvarget(6060);
  }while(code!=0x4d);//wait till motion finished
};
find_edge()
{
  gvarset(8632,speed);
  sensor0=portget(INPUT_PROBE);
  len=length;
  if (sensor0!=0) {len=0-len;};
  g0moveA(0,axis,len);
  edge=100;
  do{
   code=gvarget(6060);
   if (code==0x4d)
    {
      edge=0;
    }else
    {
      sensor1=portget(INPUT_PROBE);
      if (sensor1!=sensor0)
       {
        edge=1;
        message=stop_code;
        do { code=gvarget(6060); }while(code!=0x4d);  //wait till motion finished
       };
    };
  }while (edge==100);
};
move_x()
{
  gvarset(8632,speed_fast);
  g0moveA(0,0x1,0-length);
  do
  {
    sensor1=portget(INPUT_PROBE);
    if (sensor1==0)
    {
        edge=0;
        message=stop_code;
        wait_move();
    };
    code=gvarget(6060);
  }while(code!=0x4d);//wait till motion finished
};
move_y()
{
  gvarset(8632,speed_fast);
  g0moveA(0,0x2,length);
  do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished
};
move_y0()
{
  gvarset(8632,speed_fast);
  g0moveA(0,0x2,ROLLBACK);
  do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished
};
save_pos()
{
    if (edge==0)  {   show_error();    };
    //y_pos=gvarget(5042);
    //gvarset(400+point, gvarget(5041));  timer=30;do{timer--;}while(timer>0); //
    //gvarset(401+point, y_pos);  timer=30;do{timer--;}while(timer>0); //
    //point+=2;
    gvarset(5730, 1);  timer=30;do{timer--;}while(timer>0); //
    gvarset(8632,speed_fast);  g0moveA(0,axis,ROLLBACK); wait_move();
};
main()
{
  gvarset(5740, 1);  timer=30;do{timer--;}while(timer>0); //
  portset(7);
  gvarset(300,300); timer=30;do{timer--;}while(timer>0); //
  gvarset(301,1500); timer=30;do{timer--;}while(timer>0); //
  point=0;
  gvarset(8631,50); //acceleration time 100ms = 0.1s
  gvarset(5539,1); //switch to fast g0moveA implementation
  edge=0;
  stop_code=PLCCMD_LINE_SOFT_STOP;//skip line
  length=6000;
  speed_probe=gvarget(300);
  speed_fast=gvarget(301);
  speed=speed_fast;
  find_start();
  axis=0x1; //X axis
  do_rollback_x();
  do
  {
    axis=0x2; //Y axis
    speed=speed_fast;
    do_rollback_y();
    do{  find_edge(); }while((edge==0)&(sensor1!=0));
    if (edge!=0)
    {
      speed=speed_probe;
      find_edge();
      save_pos();
      move_x();
    };
  }while(edge!=0);
    axis=0x1; //X axis
    speed=speed_fast;
    find_edge();
    if (edge==0)  {   show_error();    };
    speed=speed_probe;
    find_edge();
    save_pos();
    move_y();
    speed=speed_fast;
    find_edge();
    if (edge==0)  {   show_error();    };
    speed=speed_probe;
    find_edge();
    if (edge==0)  {   show_error();    };
    save_pos();
    gvarset(5740, 200);  timer=30;do{timer--;}while(timer>0); //
    exit(99);
}; 

Simultaneous homing for two axes

The code below allows simultaneous homing for both the X and the Y axes. The example is using a lot of the functionality described in the Jog from PLC section of the PLC manual (PLC. Please refer to the full PLC manual for further explanation on the jog from PLC functionality and its associated global variables.

#include pins.h
 
wait_move()
{
    do { code=gvarget(6060); }while(code!=0x4d);  //wait till motion finished
};
 
show_error()
{
    gvarset(9121,1); //bring up popup message 21
    timer=50;do{timer--;}while(timer>0);
    message=PLCCMD_MOTION_BREAK;	//1033
    exit(99);
};
 
find_home_xy()
{
 
  gvarset(5521,1); //disable hardware limits
  gvarset(5525,1); //disable software limits
 
  gvarset(8631,50); //acceleration time 100ms = 0.05s
 
  statex=0;
  statey=0;
  speed=500;
  speed_slow=50;
 
  direction=(1<<8)+(2<<8); //set the direction variable to X- Y-
 
  gvarset(8634,(1<<24)|speed); //Jog speed for X
  gvarset(8634,(2<<24)|speed); //Jog speed for Y
 
  gvarset(8635,direction); //jog in the set direction (X- Y-)
  timer=0;
  do
   {
      changed=0;
      if (statex==0) //to home X
       {
          sens=portget(INPUT_HOME_X); //get state of home x sensor
          if (sens!=0)
          {
            statex=1;
            gvarset(8634,(1<<24)|speed_slow); //Jog speed for X
            changed=1;
          };
       };
      if (statex==1) //rollback from home X
       {
          sens=portget(INPUT_HOME_X);
          if (sens==0)
          {
            statex=2;
            changed=1;
          };
       };
 
      if (statey==0) //to home Y
       {
          sens=portget(INPUT_HOME_Y); //get state of home y sensor
          if (sens!=0)
          {
            statey=1;
            gvarset(8634,(2<<24)|speed_slow); //Jog speed for Y
            changed=1;
          };
       };
      if (statey==1) //rollback from home X
       {
          sens=portget(INPUT_HOME_Y); //get state of home y sensor
          if (sens==0)
          {
            statey=2;
            changed=1;
          };
       };
 
  if (changed!=0) //if any of the sensors state is changed
  {
    direction=0; //set direction to 0 (no movement) before flipping
    if (statex==0) { direction=direction | (1<<8);  };  //direction set to X-
    if (statex==1) { direction=direction | 1;  }; //direction set to X+
    if (statey==0) { direction=direction |  (2<<8);  };  //direction set to Y-
    if (statey==1) { direction=direction |  2;  }; //direction set to Y+
    gvarset(8635,direction); //jog in new direction for the axes
  };
 
 
 
      if ((timer&0xff)==0)   {     gvarset(8635,direction);    };
      timer++;
      ready=(statex==2)&(statey==2);
 
    }while(ready==0);
 
 
   gvarset(8635,0); wait_move(); //stop jog
 
};
 
main()
{
 
  gvarset(8631,50); //acceleration time 50ms = 0.05s
  gvarset(5539,1); //switch to fast g0moveA implementation
 
  find_home_xy();
 
 
  exit(99);  //normal exit 
};
plc/plc_examples.txt · Last modified: 2024/02/21 13:59 by ivan

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki