User Tools

Site Tools


mycnc:gcodes_list

G-Codes list

Below is a list of G-codes currently implemented in the myCNC system.

G-codes
Code Description Mill (M)
Lathe(L)
Cutting table (C)
Comments
G00 Rapid Positioning gcodes-list-003-g0.jpg. See note on G53.
G01 Linear Interpolation gcodes-list-004-g1.jpg
G02 Arc CCW Interpolation gcodes-list-005-g02.jpg
G03 Arc CW InterpolatioMotion Mode Canceln gcodes-list-006-g3.jpg
G04 Dwell In milliseconds. Will prevent the axes from moving during the specified time period
G5.1 Spline Interpolation
G5.2 Nurbs Interpolation
G5.3 Nurbs Interpolation End
G10 Data Set
G11 Mirror Cancel
G12 Mirror X
G13 Mirror Y
G14 Mirror XY
G15 Polar coordinates Off
G16 Polar coordinates On
G17 Plane XY
G18 Plane ZX
G19 Plane YZ
G20 Set Units to Inches
G21 Set Units to Metric
G28 G28 Home
G28.1 Home Position Set
G28.2 Home Position #1 Save
G28.3 Home Position #2 Save
G28.4 Home Position #3 Save
G28.5 Home Position #1 Restore
G28.6 Home Position #2 Restore
G28.7 Home Position #3 Restore
G28.9 Home Position Address
G30 G30 Home
G30.1 G30 Home Set
G33 Spindle Synchronization
G33 Spindle Synchronization
G38.2 G38.2 Probing Probing codes G38.2-G38.5 are typically not used in myCNC systems, as their functions have been largely replaced and expanded by the PLC commands (specific probing M-codes)
G38.3 G38.3 Probing
G38.4 G38.4 Probing
G38.5 G38.5 Probing
G38.9 Tool Measure
G40 Tool Correction Cancel gcodes-list-008-g40.jpg
G41 Tool Correction Left gcodes-list-009-g41.jpg
YouTube link
G42 Tool Correction Right gcodes-list-010-g42.jpg
G43 G43 Tool Length Offset
G44 G44 Tool Length Offset
G49 G49 Cancel Tool Length Offset
G50 G50 Scaling Cancel M
G51 G51 Scaling Set M
G50 G50 Set Max Spindle Speed (Lathe) L
G53 Machine Coordinates M L The toolpath planner (as well as the the line/circle interpolation commands) work only in program coordinates. Therefore, the G53 code only works with G0 positioning commands. See note below on G53 & G0 usage.
G54 Use Coordinate System #1 M L Coordinate system switching codes G54-G59 change the offset between machine and work coordinates. As the toolpath planner does not have access to these commands, it is necessary to position the tool in the new coordinate system after switching (using G0)
G55 Use Coordinate System #2 M L
G56 Use Coordinate System #3 M L
G57 Use Coordinate System #4 M L
G58 Use Coordinate System #5 M L
G59 Use Coordinate System #6 M L
G59.1 Use Coordinate System #7 M L
G59.2 Use Coordinate System #8 M L
G59.3 Use Coordinate System #9 M L
G59 Set Hypertherm Power Source Parameters (Plasma Cutting table only)
G61 Exact Stop M
G62 Corner Override M
G63 Mode Tapping M
G64 Mode Cutting M
G65 G-code macro M
G73 Cycle Deep Hole Drilling M
G74 Cycle Left Hand Tapping M
G76 Cycle Lathe Thread L G76 Thread Cycle
G80 Cancel Motion Mode
G81 Cycle Drilling
G82 Cycle Drilling Dwell
G83 Cycle Peck Drilling drilling-cycle-001-g98.jpg
G84 Cycle Right Hand Tapping
G85 Cycle Boring No Dwell Feed Out
G86 Cycle Boring Spindle Stop Rapid Out
G87 Cycle Back Boring
G88 Cycle Boring Spindle Stop Manual Out
G89 Cycle Boring Dwell Feed Out
G90 Absolute Programming
G91 Incremental Programming
G90.1 Arc Center Absolute Programming
G91.1 Arc Center Incremental Programming
G92 Set Work Position M
G92 Lathe Thread L For example,
G92 S3300

will set a max spindle speed of 3300 in the constant cutting speed mode

G94 Feedrate Per Minute L
G95 Feedrate Per Revolution
G96 Lathe Surface Speed L Constant surface speed for a lathe with a given speed. For example,
G96 S220 M3

will set system to constant cutting speed mode at 220 units/min

G97 Set Spindle Speed L (revolutions per minute)
G98 Turn Feedrate per Minute L
G98 Canned Return Back to initial height M On mill machines, G98 allows to return the tool back to initial height Z during the canned return process. gcodes-list-007-g98g99.jpg
G99 Turn Feedrate per Revolution L
G99 Canned Return to a set height M As opposed to G98, which returns the tool to the initial height (height before cutting), G99 returns the tool to some set height Z. gcodes-list-007-g98g99.jpg
G130 Experimental feature - select a specific cutcharts mode from within a G-code program (for example, G130 P217 will select mode #217)
G131 Cut on/off. The P parameter loads in different cutting modes. G131 P0 - disable, G131 P1….16 - enable the corresponding mode. Power control (DAC-PWM) is activated accordingly per mode.
G150 Tool Correction Radius Set
Miscellaneous M-codes
Code Description Implementation Comments
M00 Pause
M01 Optional Stop PLC
M02 End Program Native + PLC
M03 Spindle On CW PLC
M04 Spindle On CCW PLC
M05 Spindle Stop PLC
M06 Change Tool Macro
M07 Mist On (Cutting On) PLC
M07 Plasma Dot Marking PLC
M08 Flood On (Cutting On) PLC
M08 Plasma table - Drill Marking PLC
M09 All Coolant Off (Cutting Off) PLC
M14 THC Off Native + PLC Cutting tables
M15 THC On Native + PLC Cutting tables
M19 Spindle Orientation On PLC Lathe
M20 Spindle Orientation Off PLC Lathe
M20 Start Cutting PLC Cutting Tables
M21 Stop Cutting PLC Cutting Tables
M23 Thread Finishing ON PLC Lathe
M24 Thread Finishing OFF PLC Lathe
M30 End Program with Rewind Pointer Macro
M41 Set Low Gears PLC
M41 Set High Gears PLC
M45 Start Plasma Marking PLC Cutting Tables
M46 Stop Plasma Marking PLC Cutting Tables
M50 (1) THC Off PLC Cutting Tables
M50 (2) Hypertherm HPR source Off On-the-fly Native + PLC Cutting Tables
M50 (3) Feed Override On/Off Native + PLC
M51 THC On PLC Cutting Tables
M62 Turn On binary output pin PLC
M63 Turn Off binary output pin PLC
M64 Turn On binary output pin PLC
M65 Turn Off binary output pin PLC
M71 Start Cutting YouTube video PLC Cutting Tables
M72 Begin Plasma Marking Section PLC Cutting Tables
M73 End Plasma Marking Section PLC Cutting Tables
M74 Stop Cutting PLC Cutting Tables
M75-M88 User defined M-codes (Section 1)
M92 Start Cutting PLC Cutting Tables
M93 Stop Cutting PLC Cutting Tables
M89 Start Marking PLC Cutting Tables
M90 Stop Marking PLC Cutting Tables
M98 Subroutine Run Native Cutting Tables
M99 Subroutine End Native Cutting Tables
M101-199 User defined M-codes (Section 2)
M200-999 User defined M-codes (Section 3)
M421 Tool Length Measure
M422 Tool Breakage Check
M440-M470 Probing tool macros (locating surface, edges, etc)
Misc Macros
Code Description Implementation Comments
Homing
M131 Homing X axis Macro
M132 Homing Y axis Macro
M133 Homing Z axis Macro
M134 Homing A axis Macro
M135 Homing B axis Macro
M136 Homing C axis Macro
M138 Homing All axes Macro

G10 Data Set

G10 L P Q X Y Z A B C U V W

  • G10 - data set
  • L - code operation
  • P - Parameter #1
  • Q - Parameter #2
  • X,Y,Z,A,B,C,U,V,W - coordinates/values
  1. L2 - set an offset between program and machine coordinates. P1 to P9 for coordinate systems G54 to G59.3
    G10 L2 P1 X1 Y1 Z1 (Set G54 offset X to 1, Y to 1, Z to 1)
  2. L70 - set position to given values
  3. P0 - Set Machine Position to given values
    G10L70 P0 X0 Y0 (Set Machine coordinates X=0, Y=0)
  4. P1 - Set Work Position in G54 Coordinates system to given values
    G10L70 P1 X10 Y20 Z30 (Set G54/Work coordinates X=10, Y=20, Z=30)
    G10L70 P1 X0 Y0 Z0 A0 B0 C0 (Set G54/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  5. P2 - Set Work Position in G55 Coordinates system to given values
    G10L70 P2 X0 Y10 Z20 (Set G55/Work coordinates X=0, Y=10, Z=20)
    G10L70 P2 X0 Y0 Z0 A0 B0 C0 (Set G55/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  6. P3 - Set Work Position in G56 Coordinates system to given values
    G10L70 P2 X0 Y10 Z20 (Set G56/Work coordinates X=0, Y=10, Z=20)
    G10L70 P3 X0 Y0 Z0 A0 B0 C0 (Set G56/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  7. P4 - Set Work Position in G57 Coordinates system to given values
    G10L70 P4 X0 Y10 Z20 (Set G57/Work coordinates X=0, Y=10, Z=20)
    G10L70 P4 X0 Y0 Z0 A0 B0 C0 (Set G57/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  8. P5 - Set Work Position in G58 Coordinates system to given values
    G10L70 P5 X0 Y10 Z20 (Set G58/Work coordinates X=0, Y=10, Z=20)
    G10L70 P5 X0 Y0 Z0 A0 B0 C0 (Set G58/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  9. P6 - Set Work Position in G59 Coordinates system to given values
    G10L70 P6 X0 Y10 Z20 (Set G59/Work coordinates X=0, Y=10, Z=20)
    G10L70 P6 X0 Y0 Z0 A0 B0 C0 (Set G59/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  10. P7 - Set Work Position in G59.1 Coordinates system to given values
    G10L70 P7 X0 Y10 Z20 (Set G59.1/Work coordinates X=0, Y=10, Z=20)
    G10L70 P7 X0 Y0 Z0 A0 B0 C0 (Set G59.1/Work coordinates X=0,Y=0,Z=0,A=0,B=0,C=0)
  11. P8 - Set Work Position in G59.2 Coordinates system to given values
  12. P9 - Set Work Position in G59.3 Coordinates system to given values
  13. Current coordinates number is stored in Global variables register #5220. This register can be used to set Work coordinates in the Current Coordinates System
    G10L70 P#5220 X0 Y10 Z20 (Set The Current Work coordinates X=0, Y=10, Z=20)
    G10L70 P#5220 X0 Y0 Z0 A0 B0 C0 (Set The Current Work coordinates to X=0,Y=0,Z=0,A=0,B=0,C=0)
  14. L80 - Assign value from Q to Register Address P
    G10L80 P100 Q10 (//Assign "10" to Register #100 // #100=10 //)
  15. L81 - Copy value from Register Address Q to Register Address P
    G10L81 P100 Q10 (//Assign a value of Register #10 to Register #100 // #100=#10 //)
  16. L180 - Add Q value to Register Address P and store the result to Register Address P
    G10L180 P100 Q10 (//Add 10 to Register #100 // #100=#100 + 10 //)
  17. L181 - Subtract Q value from Register Address P and store the result to Register Address P
    G10L181 P100 Q10 (//Subtract 10 from Register #100 // #100=#100 - 10 //)
  18. L182 - Mul Register Address P by Q value and store the iresult to Register Address P
    G10L182 P100 Q10 (//Multiply Register #100 by 10 // #100=#100 * 10 //)
  19. L183 - Divide Register Address P to Qvalue and store the result to Register Address P
    G10L183 P100 Q10 (//Divide Register #100 by 10 // #100=#100 / 10 //)
  20. L184 - Binary AND value Q with Register Address P and store the result to Register Address P
    G10L184 P100 Q66 (//Binary AND Register #100 with 66 // #100=#100 & 66 //)
  21. L185 - Binary OR value Q with Register Address P and store the result to Register Address P
    G10L185 P100 Q66 (//Binary OR Register #100 with 66 // #100=#100 | 66 //)
  22. L186 - Binary XOR value Q with Register Address P and store the result to Register Address P
    G10L186 P100 Q77 (//Binary XOR Register #100 with 77 // #100=#100 ^ 77 //)
  23. L190 - Add value from Register Address Q with Register Address P and store the result to Register Address P
    G10L190 P100 Q101 (//Add Register #100 with Register #101 // #100=#100 + #101 //)
  24. L191 - Subtract value from Register Address Q from Register Address P and store the result to Register Address P
    G10L191 P100 Q101 (//Subtract Register #101 from Register #100 // #100=#100 - #101 //)
  25. L192 - Mul value from Register Address Q by Register Address P and store the result to Register Address P
    G10L192 P100 Q105 (//Multiply Register #100 by Register #105 // #100=#100 * #105 //)
  26. L193 - Divide value from Register Address P to Register Address Q and store the result to Register Address P
    G10L193 P100 Q101 (//Divide Register #100 to Register #101 // #100=#100 / #101 //)
  27. L194 - ABS calculate absolute value of Register Address P and store the result to Register Address P
    G10L194 P100 (//Absolute value of Register #100 // #100=ABS(#100) //)
  28. L200 - trigonometric functions support, a command with the format “P_reg1 Q_reg2” where Register Address reg1 = sin(reg2)
  • L201 - reg1 = cos(reg2)
  • L202 - reg1 = tan(reg2)
  • L203 - reg1 = asin(reg2)
  • L204 - reg1 = acos(reg2)
  • L205 - reg1 = atan(reg2)

G92/G96 for lathe cutting

In a lathe system, G92 is used to set the maximum spindle speed (in the constant cutting speed mode), while G96 sets a constant surface cutting speed. In the code below,

N17 G97 S2500 M3
N18 G0 X14 Z1
N19 G92 S2500
N20 G96 S220 M3

the G92 line will set the maximum speed to 2500 rpm, while the G96 line will switch the system to a 220 m/min constant cutting speed mode.

In this mode, the spindle speed is recalculated depending on the current diameter (the current X coordinate).

The rotation speed changes depending on the diameter, so that the cutting tool moves along the surface at a set speed of 220 meters/min. The larger the diameter, the slower the system will rotate the part, and if the diameter is smaller, then the rotation speed will increase. By this logic, the rotation speed can go to infinity when the diameter reaches 0, so G92 is used to set a maximum value.

In a lathe configuration, both G92 and G50 work the same way if the “S” parameter is used. If the G92 command features an F-code parameter however, then the command is treaded as a threading command.

For example,

G92 S2500

and

G50 S2500

should produce the same result (although some users may prefer G92 due to the general convention). However, a command such as

G92 Z-12 X10 F1
G92 Z-12 X20 F1 L2 P99

is automatically recognized by the system as a threading command instead.

M07 - Plasma Dot Marking

M07 is used as Plasma Dot Marking. Dot Marking procedure is -

  • Plasma Torch moves down till probe sensor activated
  • The torch moves up to Ignition Height
  • Plasma Power source is turned ON
  • System wait Dot Time which is sum of Plasma Power Source Delay Time and Dot Time
  • Plasma Power source is OFF
  • Torch moves up to 20mm

M07 PLC procedure source code is below

M07.plc
#include pins.h
#include vars.h
#include func_ihc.h
 
main()
{
  portclr (OUTPUT_MARKER1);
  portclr (OUTPUT_MARKER2);
 
  do_plasma_probe();
 
  if (marker_ihc_dot_height<10) {marker_ihc_dot_height=10;}; //fix dot height parameter is not correct
 
  gvarset(7080,ihc_move_down_speed);//set speed;
 
  g0moveA(0x0,0x4,marker_ihc_dot_height); //Z axis, ignition_height
  timer=200;do{ timer--; }while(timer>0); //wait 0.1sec till motion started
  do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished
 
  portset(OUTPUT_PLASMA); //PLASMA ON
  portset(OUTPUT_MARKER1);
 
  timer=marker_dot_time; //dot time
  timer=timer+marker_dot_delay; do{ timer--;}while(timer>0); //dot time delay
 
  portclr(OUTPUT_PLASMA); //PLASM OFF
  portclr(OUTPUT_MARKER1);
 
  g0moveA(0x0,0x4,2000); //Z axis, ignition_height 20mm up
  timer=200;do{timer--;}while(timer>0); //pause 0.1sec for motion starts
  do { code=gvarget(6060); }while(code!=0x4d);//wait till motion finished
 
  proc=plc_proc_idle;
  exit(99);
};

M08 - Plasma cutting table - Drill Marking

M08 is used for Drill Marking operations on Plasma Cutting machines which have drill head. Drill Marking procedure is the following:

  • Drill Head Cylinder and Drill Power turned ON
  • Drill Head moves down on Probing Speed until Drill probe sensor activated
  • Moving speed switched to Drill Speed and the Head move lower to programmed Drill Depth
  • Drill Head moves up to Lift Height
  • Drill Head Cylinder and Drill Power turned OFF

M08 PLC source code example is shown below

M08.plc
#include pins.h
#include vars.h
main()
{
  portset(OUTPUT_DRILL_VALVE);
  portset(OUTPUT_DRILL_POWER);
 
  gvarset(7080,drill_probe_speed ); //set speed;
  timer=200;do{timer--;}while(timer>0); //wait till drill head down
 
  sens=portget(INPUT_DRILL);
  if (sens==0)
  {
    g0moveA(0x0,0x4,0-30000); //Z axis
    timer=200;do{timer--;}while(timer>0); //wait till motion started
    do{
        code=gvarget(6060);
        sens=portget(INPUT_DRILL);
        if (sens!=0)
        {
          code=1;
          message=PLCCMD_LINE_STOP;//skip line
        };
      }while (code==0);
      do { code=gvarget(6060); }while(code!=0x4d); //wait till motion finished
  };
 
  gvarset(7080,drill_speed);//set speed;
  if (drill_depth>50)
  {
    depth=0-drill_depth;
    g0moveA(0x0,0x4,depth);  //Z axis
    timer=200;do{timer--;}while(timer>0);   //wait till motion started
    do{code=gvarget(6060);}while(code!=0x4d);//wait till motion finished
  };
 
  gvarset(7080,1000);//set speed up;
 
  if (drill_lift_height<100)
  {
    drill_lift_height=100;
  };
 
  g0moveA(0x0,0x4,drill_lift_height);   //drill head lift height
  timer=200;do{timer--;}while(timer>0); //wait till motion started
  do { code=gvarget(6060); }while(code!=0x4d); //wait till motion finished
 
  portclr(OUTPUT_DRILL_VALVE);
  portclr(OUTPUT_DRILL_POWER);
 
  exit(99);
};

M45 - Start Plasma Marking

M45 - Start Plasma Marking is implemented through Hardware PLC procedure. The M45 source example is listed below. Functions should be described in include files “func_ihc.h” and “func_plasma.h”

  • do_plasma_probe();
  • do_move_ignition_height();
  • do_wait_plasma();
  • do_move_pcutting_height();
M45.plc
#include pins.h
#include vars.h
#include "func_ihc.h"
#include "func_plasma.h"
 
main()
{
 
    portclr (OUTPUT_MARKER1);
    portclr (OUTPUT_MARKER2);
 
    do_plasma_probe();
    do_move_ignition_height();
 
    portset(OUTPUT_PLASMA);
    portset(OUTPUT_MARKER1);
 
    do_wait_plasma();
    do_move_cutting_height();
 
    texit=timer+ihc_pierce_time;
    do{timer++;}while(timer<texit);
 
    start_thc();
 
    //set OK message and exit
    proc=plc_proc_plasma;
    message=PLC_MESSAGE_PLASMA_OK;
    exit(99);
};

G0G53 vs G1/G2/G3 commands

Keywords: Simulator Displacement Error, Critical Compiler Stop.

When using G0G53 commands in machine coordinates, the controller switches to the machine coordinate position and the program coordinates become undefined at that given moment as a result. This means that the G1/G2/G3 interpolation commands cannot be used under these circumstances (instead, G0 must be used).

Therefore, after such a switch, it is necessary to first give a positioning command using G0. This command must be given for those axes that were used as machine axes so that the controller can apply the appropriate offsets for the program coordinates.

For example, this issue will occur when a macro present within a G-code program will contain G0G53 commands (for instance, the M6 tool change macro), after which the G1/G2/G3 interpolation is used immediately. To go further with this example, the user CANNOT use the following combination:

M6T1 (in this example, M6 utilizes G0G53)
G1 Z5
G1 Y5 X5

The code above will lead to a simulator displacement error. Instead, for the example above, the following code must be used:

M6T1 (in this example, M6 utilizes G0G53)
G0 Z5
G0 Y5 X5

In this second code example, as the tool change macro uses G53 G0 XYZ, the first movement after a tool change will be G0 (for XYZ). This can either be done in G-code (via a post-processor which will correctly output G0 instead of G1 for that section), or within the tool change macro itself.

mycnc/gcodes_list.txt · Last modified: 2023/09/29 14:15 by ivan

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki